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OPTIMAL BEAM FREQUENCIES BY THE FINITE ELEMENT
DISPLACEMENT METHOD

M. P. KaMmatt and G. J. SiMiITsES]

Georgia Institute of Technology, Atlanta, Georgia

Abstract—A finite element displacement formulation is used to maximize the first mode natural frequency of a
vibrating beam of specified volume with elastically restrained ends and resting on a continuous elastic foundatior
subject to a constraint of minimum allowable moment of inertia. For cross-sections with moment of inertia an
area related by I = pA" (p and n are positive constants), the optimality condition is reduced to a relation between
the strain energy and kinetic energy densities. Beginning with a uniform beam, an iterative procedure is used to
converge to the optimum material distribution and maximum first mode frequency. Results are presented for
various boundary conditions, with and without the effect of any given arbitrarily varying axial load distribution
and/or dead mass distribution for n = 1, 2 and 3..

NOTATION
A(x) cross-sectional area distribution
c constant of optimality
! constant in the recurrence relation
E Young’s Modulus of Elasticity
g ‘ acceleration due to gravity
I(x) cross-sectional moment of inertia distribution
3 translational spring stiffness (at x = 0)
'3 rotational spring stiffness (at x = 0)
k% translational spring stiffness (at x = L)
k% rotational spring stiffness (at x = L)
(k] stiffness matrix of the ith element
[K] assembled nonsingular stiffness matrix of the entire beam including the effect of the elastic foundation,
elastic restraints and the given applied axial loading
L total length of the beam
[m;] mass matrix of the ith element
m(x) mass distribution
my(x) dead mass distribution
m; concentrated dead mass at the point i
[M] assembled mass matrix for the entire beam
n index in the moment of inertia-area relation
p exponent in the recurrence relation
Py axial load at x = 0
P, axial load at x = L
{q} vector of the independent degrees of freedom
{q;} displacement vector of the ith element
q(x) internal axial load distribution
rr+l superscripts used to denote the (r)th and (r + 1)st iterations
S(x) applied axial load distribution
Uy bending energy of the ith element
Ug total bending energy of the entire beam
Uy kinetic energy of the ith element
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Uy total kinetic energy of the entire beam

v volume of the ith element

V total volume of the beam

w(x) mode shape : eigenfunction

B foundation modulus in force/(length)?

v specific weight of the material of the beam

p shape constant

w? square of the first mode frequency ; eigenvalue
INTRODUCTION

THE interest in minimum weight design of columns and beams dates back to around 1770
when Lagrange first tackled the problem of finding the optimal shape of the Euler—
Bernoulli column but arrived at the wrong result due to computational error. The correct
solution was subsequently given by Clausen in 1851 and independently by Keller [1] in
1960. Later Keller and Niordson [2] also treated the problem of the tallest column. The
problem of the strongest column was generalized to all classical boundary conditions for
columns with similar cross-sections, i.e. n = 2 by Tadjbakhsh and Keller [3]. Prager and
Taylor [4] gave exact solution for a simply-supported column of sandwich construction.
These exact solutions indicate that the stiffness must vanish at some points along the
length of the column depending upon the boundary conditions. This undesirable feature
was later removed by the present authors [S] by the use of the inequality constraint and the
problem was further generalized to all possible boundary conditions, i.e. with elastic
restraints, using the finite element displacement method to obtain approximate numerical
solutions.

The problem of the design of a vibrating string with variable density for a specified
period and the type of vibration was first considered by Rayleigh [6]. Subsequently Bessack
[7], Schwarz [8-10] investigated the effect of density variation on the extreme values of the
natural frequencies of strings, beams and plates. However, the most significant contributions
to the present problem would be those of Niordson [11], Turner [12], Taylor [13, 14],
Brach [15], and Karihaloo and Niordson [16]. Niordson treated the problem of the optimal
design of a simply-supported vibrating beam through variational formulation. Turner
obtained exact and finite element solutions of minimum mass design, for a specified
frequency, of bars and beams fastened at one end with a mass attached at the other end.
Taylor also obtained solutions, through the variational formulation, for the axial vibrations
of optimum bars with and without the inequality constraint and also for the transverse
vibrations of an optimum cantilever sandwich beam with a distributed mass loading.
Brach on the other hand obtained exact solutions for the extremal frequencies of transverse
vibrations of beams for all classical boundary conditions and for a relation between the
moment of inertia and area of the form I(x) = ¢y + pA(x). Finally, Karihaloo and Niordson
provided quasi-exact solutions to the problem of optimum vibrating cantilevers [I(x) =
pA"(x),n = 1, 2, 3] with or without a concentrated dead mass at the tip. The present work
is an application of the finite element displacement method, similar to that of Ref. [5], to
the optimal design of vibrating beams on a continuous elastic foundation with all possible
boundary conditions, i.e. with elastic restraints. In addition the inequality constraint of
minimum stiffness being greater than or equal to a specified value is also incorporated.
Although results are presented for relations of a form I(x) = pA"(x) where p and n are
constants it will be shown how similar problems with p being a function of x or with
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relations of the form attempted by Brach can be very similarly treated for obtaining
approximate numerical solutions.

FORMULATION OF THE PROBLEM

Given an Euler-Bernoulli beam of a specified length and volume (mass) resting on a
continuous elastic foundation and allowed to vibrate freely under the influence of any given
varying axial load and/or dead mass distribution and under various boundary conditions
(mixed or not—with or without elastic restraints), the problem is to determine the distribu-
tion of material along the length of the beam so as to maximize the first mode frequency
(design objective) subject to the constraint that the minimum stiffness (area) of the beam is
not less than a specified value A4, (inequality constraint), see Fig. 1.

F1G. 1. A typical beam on a continuous elastic foundation with elastically restrained ends under arbi-
trarily varying axial load and dead mass distribution.

The problem of the optimal vibrating beam is thus a max-min problem, i.e. requiring
simultaneously that the lowest eigenvalue (first mode frequency) be maximized with
respect to variations in stiffness subject to the equality constraint that the total mass
(volume or weight) is a constant. This last requirement leads to the optimality condition.

The two variational problems are thus posed simultaneously in order to find the
minimum eigenvalue and the best distribution of material such that the lowest eigenvalue
is a maximum.

In the following development consideration will be restricted to those beams for which
the cross-sectional moment of inertia and area are related by a relation of the form

I(x) = pA"(x) (1)

p being a shape constant. The index n can assume all positive values but results will be
presented for only three specific values of n namely n = 1, 2 and 3.

Rayleigh’s principle states that in a natural mode of vibration of a conservative system
the frequency of vibration is stationary. Furthermore, at the first mode w? (the square of
the frequency)is a minimum, thatistosay,w? corresponding toany kinematically admissible
mode shape w(x), will be higher than the exact first mode frequency. Ignoring the effect of
shear deformation the Rayleigh quotient is given by

[& EIx)[w"(x)]? dx + U~ [ q(x)[w'(x))* dx
[& m(x) [w(x)]* dx +[§ my(x) [w(x)1? dx+ Y *_ | mw]

®? = min

()
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where
U, = twice the energy of the spring supports

L
k9wl 4 Kbw?| -+ kOuw2lo + kw2l + B f w? dx
(3]

p being the foundation modulus

4(x) = Po— f S(¢) dé
[0

such that
L
f S(¢)dé = Py~ P, (see Fig. 1)
0

m(x) = the mass per unit length and is related to 4(x) by the relation m(x) = (7/g)A(x); y
being the specific weight of the material and g the acceleration due to gravity.
Since I(x) = pA"(x) equation (2) can be written as

{5 EpA™(x)[w"(x)]? dx + U —[§ g(x)[w'(x)]* dx

2
T EL (1) A [W(x)]% dx + & mgloe) [w(x))? dx + 3% | mw?”

wy =

The necessary condition for w? to be a minimum w.r.t. w is that d..(w?) = 0. This leads to
the governing equation of motion of the beam and the associated boundary conditions.
These are:

[EPA"W”]"—wf(gA+md)W+.3W+[CI(X)W’]’ =0 )

EpA™ —kdw' = 0
. } atx =0 4

(EpA™"Y +kSw+qw' = 0
EpA™W’ +kiw' = 0

atx =1L
(EpA™W") —kkw+qw' = 0

(5)

In addition, there are the conditions of continuity of displacement, slope, moment and
known discontinuities of shear at the points of application of the concentrated dead masses,
if any.

Next, it is required to maximize w? with respect to variations in A(x) subject to

L
f Adx =V. 6)
0
Hence, the new functional that must be extremized is
(@) = {5 EpA"(x)[w"(x)]* dx+ U, —[§ g(x)w? dx L J‘L Adr—V
1§ G/2)AX) w(x)]* dx +{§ my(x) [w(x)]* dx + D% | '

where A, is an undetermined Lagrange multiplier. The necessary condition for {(w?)* to be
stationary with respect to variations in A(x) is

L L k
f {EpnA"‘lw'Q_)t, [f (ZA+md)w2 dx+ Y mciwiz:| w? Lo }6A dx = 0.
0 o \8 . i=1 g
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Hence, if 64 is arbitrary, i.e. the area is not prescribed then the above implies that
EpnA" 'w"? — w? ?w? = ¢ = constant. N
g

Equation (7) is valid only in those regions where the area is not prescribed. In other regions,
in the event that the area as determined by the use of equation (7) happens to be less than
A, the constraint A = A, has to be satisfied.

Multiplication of equation (7) throughout by A followed by integration from x = 0 to
x = L yields

L Loy L
nj EpA"w”zdx—wa §Aw2dx=cJ~ Adx
0 0

0

or

_ 2nUp—Uy)
c= % .

Equation (7) can therefore be written as

2
EpnA"~ 1w”z—wfng = v(nUB— Urp) (8a)

Notice thatin the case of a beam with classical boundary conditions forn = 1,the constant ¢
is zero while for the same beam with elastic restraints the constant ¢ is negative. It can also
be seen that equations (3) through (7) remain unchanged in the event that p is a function of x.
For relations of the form

I(x) = ¢co+ pA(x)

although equations (3)}-(5) have to be modified, as it will be seen later, the corresponding
matrix equations in terms of finite elements remain the same in form while the optimality
condition for this case is nothing more than what one would obtain forn = 1, i.e.

EpWIIZ_w%ng =C3 = constant. (8b)

METHOD OF SOLUTION OF THE PROBLEM

The proposed method is the finite element displacement method which reduces to the
Rayleigh—Ritz method when the assumed displacement function satisfies compatibility
exactly. Further, as will be seen later, the optimality condition, equation (8a), when trans-
formed in terms of finite elements is much simpler to handle.

The details of the finite element displacement method as applied to vibrating beams
can be found in several references (Refs. [17] and [18]) and hence are not reproduced here.

In terms of finite elements the equation of motion together with the boundary conditions
becomes

[[K]1-wi[M]]{q} = {0} ©)
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where [K] is the assembled nonsingular stifiness matrix for the entire beam including the
effect of the applied axial loading, ®? is the lowest eigenvalue, [M] is the assembled mass
matrix for the entire beam including the effect of dead mass if any and {g} is the vector of
unrestrained degrees of freedom of the beam. Having determined w? and the corresponding
eigenvector {q}, by the solution of the eigenvalue problem as specified by equation (9) the
strain energy and the kinetic energy densities in each element can be determined as

93,1 _ %{Qi}T{ki] 4

’, 0 P=12...m (10a)
and
U, %{Qi}TDM i {‘15} .
S _ 2y U d =1.2. .m
o T i=1, m (10b)

Next, the optimality condition is transformed in terms of the finite elements. Multiplying
equation (8a) throughout by 4 and integrating over the extent of the ith element one obtains

Xi+ 1 Xi+ 1 X+ 1
f EpnA™w"? dx — w? J T awrdx = ¢ f Adx
x g X;

i x;

ie.
2nUbi"—2U"' = Cl)l
or
U,. U,
{20 -5
v v; 2
Equation (11) can be written as
n(Uy/v) .
- =1 ife; >0 {12a)
c +(Uy/v) !
or
n(U/v)—c, )
e =1 i 0. 12b
(Ufo) Hees (120)

Equation (11) is the necessary optimality condition in terms of finite elements.
Note that for I(x) = pA"(x) the constant ¢, is given by

Cl = (nUB— UT)/V
while for I{x) = ¢, + pA(x) the constant ¢, is given by

1 L
¢, =1} ——1| Ecow?dx|.
[ e
Unconstrained optimization

The objective of this optimization is to make the ratio n(U,;/v,)/(c, +(U,;/v;)) equal to
unity. This is similar to the objective in Ref. [5] where it was required to make (U,;V/o;U)
equal to unity. Hence a similar procedure is employed.
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One starts with a uniform beam, i.e. a beam having a uniform cross-section complying
with the given volume V. Then using equation (10) the strain energy and the kinetic energy
densities in each of the elements can be determined. These distributions of strain and kinetic
energy densities are used for deciding the inertias of the elements for the next iteration.

Assume the rth iteration begins with the ith finite element having the moment of inertia
I7(i = 1,2...m). After determining the associated eigenvalue and eigenvector, the average
strain and kinetic energy densities for each element and the average strain and kinetic
energy densities for the whole beam can be computed ; these quantities are denoted by
Up b, Upfoi (i = 1...m) and Ug/V and U%/V where

m m
=2 Ul =2 Ui

i=1 i=1

and
V=Y v} = specified volume.
i=1

The inertias for the next iteration are assumed to be given by the following relation

nUs/oh) 17 .
I;u:cm,;[ﬁ#_] e > 0
[} +(U%/v)] '

or

U/ —=cl|? .
L= c'+11;[~«—-—["( wol ] ifey <0
(U/v) ‘

where the exponent p is assumed to be positive and the constant C'*! is determined from
the constant volume constraint. Next, it can be shown that as long as the ratio inside the
brackets is different from unity a value of p > Oexists which guarantees that (w?) " ! > (w?)
(see Refs. [5] and [19]).

The initial value of p can be assumed to be 1 or less and the iterative scheme can be
continued with the value of p for as long as (w?)"*! > (w?). If it so happens that at some
stage (w?) ' < (w?) then the value of p is reduced by a factor of half or a quarter and the
iteration is repeated. This process is continued until no substantial change either in the
value of w?} or the moment of inertia distribution is possible and the optimality condition
is essentially satisfied. The initial value of p assumed and the successive factors used to
scale it down during the process decide the number of iterations required for complete
convergence. The iterative procedure thus guarantees a monotonic convergence to the
maximum first mode frequency though not always via a monotonic convergence of the
energy density ratio.

The existence of p to guarantee (w2)*! > (w?)" can also be shown when I(x) = ¢, +
pA(x), the volume constraint that needs to be satisfied in this case being

LIr+1
f dx =V, = v=5oL.
o P p
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Constrained optimization

In the case of the inequality constraint, assume the value of the prescribed minimum
inertia to be I,.

The constrained optimization proceeds exactly in the same manner as the unconstrained
optimization till such point at which the inertias of some elements violate the inequality
constraint. The inertias of those elements are arbitrarily set equal to the prescribed minimum
value I, while the inertias of the remaining elements have to be recalculated. Assume the
volume of the j elements with prescribed inertias to be V,. The new value of ¢, can be
calculated for the remaining (m—j) elements. Let this new value of ¢, be denoted by ¢, .
Hence the new inertias of these (m — j) elements are given by

JrHt pe1 MU/v)

tl=Ct'———— ifc}, >0
5+ (Ugfvy 2
where C"*! is to be determined from the constraint
(m—j) I{+l 1/n
( : ) li=WV-Y)
i=1\ P

the summation in the above equation extends only over those (m— j) elements which do
not violate the inequality constraint. It should be noted that in the case of inequality
constraint the quantity

[n_ )

v; v;

will beequalto aconstant only over those (m — j)elements which do not violate the inequality
constraint. For the j elements with prescribed inertias the aforementioned quantity will
have different values.

RESULTS AND CONCLUSIONS

The criterion used for specifying convergence is

nUy—Us "= Uy} 101100 < 050
v; max vj min - ‘

(@) A uniform cross-section freely vibrating simply-supported with I = pA satisfies the
optimality condition trivially, i.e.
Uy—Us _ Up=Us _

v, V

i

0, i=1...m

and hence no increase in the first mode frequency is possible. On the other hand for a
freely vibrating simply-supported beam with I(x) = pA™(x),n = 2 and 3 a finite (6 per cent
for n = 2 and 11-5 per cent for n = 3) increase of the first mode frequency is obtained (see
Fig. 2). This 6 per cent increase for n = 2 compares very favorably with the 6-6 per cent
increase obtained by Niordson. It can be seen that in Fig. 2 only ten elements need be con-
sidered because of symmetry and complete convergence can be obtained within a matter of
about five to six iterations.
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FIG. 2. Optimum area distribution for a beam with k% = o0,k = 0, k% = o0, kk = 0;(@)n = 2, (i)n = 3.

(b) Figure 3 shows a simply-supported beam on a continuous elastic foundation of
moderate stiffness and the corresponding increases of the first mode frequency for m = 10
and m = 20 respectively, m being the number of elements.

(c) Figure 4 shows the effect of an axial tension load on the optimum first mode fre-
quency of a simply-supported beam with I(x) = pA%(x).

(d) In the absence of the dead mass distribution and/or a compressive axial load
(P/P,, ~ 0-25 or higher) and/or an inequality constraint except for the simply-supported
beam, all beams with other boundary conditions do not seem to possess a finite optimum
first mode frequency. This does not seem to be in agreement with the conclusions of Ref. [16]
for the case of a cantilever with no dead mass at the tip. For this case Ref. [16] obtains

e (—‘i wi) = 118.122 Ep -5 T 1.10(1 wf) ; m=20
& “opr L g 1/

1 5—-—-(—‘1 u)i) = 116.553 Ep - ¥ 1.085(1 wf) ; m=10
& “opr L &y

1.0 ‘
- —
|
b
0.5 J SYMMET\RICAL
1 1 1 1 L
0.0 0.10 0.20 0.30 0.40 0.50

FIG. 3. Optimum area distribution for a beam with k} = o0, k§ = 0,k = o0, kf = 0; 8 = 10 EpV?/LS,;
() m = 10, (ii) m = 20.
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FiG. 4. Optimum area distribution for a beam with k% = oo, k3 = 0, k% = o0, ks = 0; P, = P, =
—SEpV¥L*n=2

finite optimum frequencies forn = 2 and 3. With the finite element representation of a beam,
which is in essence a stepped beam, it seems that frequencies highly in excess of those
reported in Ref. [16] can be obtained with increasing number of elements used to model the
beam.

(e) InFigs. 5,7, 8 and 10, n denotes the ratio of the total dead mass to the total structural
mass of the beam. Figure 5 shows a cantilever beam with I(x) = pA4?(x) vibrating with a
concentrated dead mass at the tip. Results are presented for this with m = 10 and m = 20.
For the assumed ratio of # the results show a good correlation with those of Ref. [16].

(f) Figure 6 shows the effect of an inequality constraint on the optimum area distribu-
tion and the first mode frequency of a freely vibrating cantilever beam with I(x) = pA?%(x).
Results are presented for this beam withm = 10 and m = 20.

I
_____ g wl) = 7.887 Ep ;% jad 1'945(1 wf)
0BT L g “1/y
m=10
1.5 wf) = 8.011 Ep %
OPT L
~ 1.975(1 w2> ; m=20
8 1/,
Lo}t
AL
&)
0.5 |
1
0.0 0.20 0.40 0.60 0.80 1.0

X/L

F1G. 5. Optimum area distribution for a beam with k% = oo, k§ = o0, k% = 0,k = 0;7 = 0.50,x, = L;
n=2;()m =10, (ii) m = 20.
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FIG. 6. Optimum area distribution for a beam with k% = o0, k§ = 00, kk = 0,kk = 0; 4 > 02725 V/L;
n=2;()m=10, (ii)m = 20.

(g) Figure 7 shows a cantilever beam with I(x) = pA?(x) vibrating under the combined
influence of a constant compressive axialload and a linearly varying dead mass distribution.

(h) Figure 8 shows a clamped—clamped beam vibrating under the influence of a con-
centrated dead mass at the center.

(i) Figure 9 shows a clamped—clamped beam vibrating under the influence of a constant
compressive axial load for m = 20 and m = 40 with I(x) = pA%(x). No finite frequency
seems to exist for this beam under the influence of a tension load.

(j) Figure 10 shows two typical cases of a clamped—pinned beam ; firstly the effect of an
inequality constraint on the beam with I(x) = pA(x) and secondly the effect of a uniformly
distributed dead mass on the beam with I(x) = pA%(x).

(k) Figures 11-13 show three typical cases of the elastically restrained beams vibrating
under the influence of a uniformly distributed dead mass.

(1 mf) = 42,776 Ep -—= 6. 18( 2)
& Yopr

m=10

0.5M0(1-X/L)
PqJ\\\\é;\\\\;

L]

1.0 -
)
0.5
s
0.0 0.20 0.40 0.60 0.80 1.0

FiG. 7. Optimum area distribution for a beam with k? = o0, k3 = 0, k& =0, kk = 0; n = 0.25;
Py =P, = EpV?L*;n =2.
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(g wf} = 517.942 EQ L, m( 2>
) OPT

me= 20

i i i L ‘
0.5 0.10 0,20

Fic. 8. Optimum area distribution for a beam with k2 = o, k§ = o0, kb = o0, kk = o0; g = 0.25,
x, =05L;n=2.

(I) In most of the cases 99 per cent of the optimum frequency is obtained in a matter ofa
few iterations provided the corresponding continuous system does possess a finite frequency.

(m) It is worthwhile noting that the effect of shear deformation and rotary inertia can
be very easily accounted for without changing the basic form of the optimality condition.
nU,; would then be replaced by (nU wF U,;) where U, is the strain energy of the ith element
due to the effect of shear deformation and U,; would correspond to the total kinetic energy
of the ith element which is composed of the kinetic energy of translation and » times the
kinetic energy of rotation of the beam. The element stiffness and mass matrices would have

(x m2> = 1110.844 Ep = = 2,95( w2> :
‘e Lopr L’ e 1y
m=40 |
- /- . '
R R (2 »%) = 1067.482 Ep % :
= g opr L |
i
= 2. 74s(X w2> 5 m=20
1,54 \g 1 U
AL
&)
1.0k
0.5k
N I i
0.0 0.10 0.20 7 0.30 0.40 0.50

FiG. 9. Optimum area distribution for a beam with k = oo, k3 = o0, kk = o0, kk = o0 Py = P, =
W EpVYL  n = 2; () m = 20, (i) m = 40.
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FiG. 10. Optimum area distribution for a beam with k% = oo, k% = 0, k% = oo, k5 = 0; m = 16;
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(i) A > 0316 V/L, n = 1; (ii) mgx) = 025 Mo/L, n = 2.
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FiG. 11. Optimum area distribution for a beam with k% = oo, k} = oo, kk = 25 EpV/L*%, kk = 0;

mgx) = Mo/L;n = 1.
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FiG. 12. Optimum area distribution for a beam with k3 = o0, k§ = 0, kk = o, kk = 25 EpV?/L*;
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FIG. 13. Optimum area distribution for a beam with k% = oo, k
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myx) = My/L;n=2.

1.0

o, kb = oo, kk = 25 EpV?/L3;

to be altered to take this effect into account and hopefully the same optimization procedure
can be used to converge to the optimum first mode frequency. Including these effects would
then perhaps ensure a finite frequency for the beam regardiess of the boundary conditions
and in the absence of the dead mass distribution and/or a compressive axial load and/or an

inequality constraint.
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AbcrpakT—Hcnonbiyercs GOpMyIMpOBKa NMEPeMeEilieHUs] KOHEYHOIO 3MIEMEHTa, ¢ LENbI0 JOBEAECHHS IO
MakCcMMyma coBCTBEHHOM 4acTOThl MEpBOro Buaa koJebanuit konebarouweiics Ganku 3agaHHOro o6vema,
C yNpyro 3ajgeiaHHbIMU KOHUAMM M JieXKauleii Ha HEeNpepbIBHOM YIPYIOM OCHOBAaHHM, MOABEPXEHHOH
OFPaHHUYEHHIO MMHUMYMA [OMYCKAEMOrO MOMEHTa HMHepuuu. [Ins Kpyrjioro NnomnepeyHoro CEYeHUs, C
MOMESHTOM HUEPLHMH W IIOLIAAbIO, onpeaeneHHbIiX dopMynon [ = p A" (p U 7 NONOXKUTESbHBIE TOCTOAHHBIE)
YCIAOBUE TMOCTOAHHOCTH CBOAMTCA K 3aBUCMMOCTH MEXAY TIOTHOCTAMU 3Hepruu aedopMauuu
KHHETHYeckoit ynepruv. HaumHas ¢ ogHoponHo#l 6ankoii, MpUMEHSETCS HTEPATUBHBIA MPOLECC ¢ LEbIO
onpeaesieHus CXOAMMOCTH K ONTUMYMY pacnpefefeHus mMarTepuasa ¥ MaKCUMANbHOH 4aCTOTbl MEPBOrO
Buaa konebauuit. JlaroTcs pelybTaTbl AN pa3HbIX KPaeBbIX YCJIOBHi, ¢ dhdexkTom u 6e3 addekra pac-
npeneneHus HeKOTOPOH 3aJaHHOM, MPOM3BOJIBHO H3MeHstouledica oceboit Harpybku wu, nubo, wuau
pacnpenenerus cobcTBEHHOM Maceel, ang 4 = 1, 2 u 3.



